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Gauge field theories play a central role in modern physics and are at the heart of the Standard Model of
elementary particles and interactions. Despite significant progress in applying classical computational techniques
to simulate gauge theories, it has remained a challenging task to compute the real-time dynamics of systems
described by gauge theories. An exciting possibility that has been explored in recent years is the use of highly
controlled quantum systems to simulate, in an analog fashion, properties of a target system whose dynamics are
difficult to compute. Engineered atom-laser interactions in a linear crystal of trapped ions offer a wide range
of possibilities for quantum simulations of complex physical systems. Here we devise practical proposals for
analog simulation of simple lattice gauge theories whose dynamics can be mapped onto spin-spin interactions in
any dimension. These include 1+1D quantum electrodynamics, 2+1D Abelian Chern-Simons theory coupled to
fermions, and 2+1D pure Z2 gauge theory. The scheme proposed, along with the optimization protocol applied,
will have applications beyond the examples presented in this work, and will enable scalable analog quantum
simulation of Heisenberg spin models in any number of dimensions and with arbitrary interaction strengths.
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I. INTRODUCTION

The invariance of physical systems under local transfor-
mations of fields leads to fundamental constraints on how
matter fields interact, and introduces new bosonic degrees
of freedom, the gauge fields. Gauge field theories coupled
to matter are responsible for a wide range of phenomena in
nature, and permeate condensed matter, nuclear, and particle
physics. In the case of gauge theories comprising the Standard
Model (SM) of particle physics, progress in perturbative tools
has enabled predictions for high-energy experiments at the
Large Hadron Collider [1]. Furthermore, progress in non-
perturbative tools has led to theoretical input for precision
experiments in search of violations of fundamental symme-
tries in nature, and to predicting hadronic excitations and
their internal structure [2]. Nonetheless, the computational
complexity of such studies grows significantly with the system
size. In the strong-coupling regime, in which nonperturbative
Monte Carlo sampling of quantum vacuum configurations is
a common practice, questions such as the nature of the phase
diagram of finite-density systems and the real-time dynamics
of matter remain unanswered. It is therefore essential to
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explore a broader set of computational approaches, including
those based on quantum simulation and quantum computation
[3–5], to tackle these problems.

While the idea of simulating a quantum system using an-
other quantum system with a higher level of control dates back
to Feynman [6], only the experimental advancements in recent
years have enabled powerful and sizable quantum simulations
to become a reality. As in the case of classical computations,
digital computations on quantum platforms may be the
ultimate solution to all computational problems, including
quantum simulations of physical systems. However, in the era
of noisy intermediate-scale quantum (NISQ) computing [7],
the number of high-fidelity operations that can be performed
on a device can be highly constrained by the short coherence
time of the quantum state. As a result, the digitalization of
complex dynamics, such as those associated with gauge field
theories [8–11], can be limited to small system sizes and short
evolution times. It is therefore important to seek alternative
approaches in the NISQ era. An interesting possibility
is offered by analog simulations, in which the native
Hamiltonian of the controlled quantum system is engineered
to be mapped to that of the target system. The quantum
operations are then naturally implemented once the system is
prepared to evolve according to the desired Hamiltonian.

Among the most compelling platforms for analog simula-
tions of quantum systems, including those governed by gauge
theories, are cold neutral atoms in optical lattices [12–19], op-
tical tweezers [20,21], and trapped ions [22,23]. Simple low-
dimensional field theories such as relativistic Dirac fermions,
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1+1D1 and 2+1D scalar and fermionic quantum electro-
dynamics (QED), and non-Abelian SU(2) and SO(3) gauge
theories have been studied in this context, and proposals exist
to map the desired lattice Hamiltonians (or their approximated
forms) to that of the engineered Hamiltonian of neutral atoms
in optical lattices [24–45]. Recent implementations of simple
static and dynamical gauge theories with neutral atoms in
optical lattices [46–52], however, demonstrate the challenge
of simulating more phenomenologically relevant gauge the-
ories. Given the current size of controlled quantum systems,
only a small number of degrees of freedom can be studied,
leading to unavoidable truncations in the Hilbert space of
a gauge theory that lives in a continuous infinite-volume
spacetime. Such a limitation is present in other digital and
analog quantum platforms as well. It is nonetheless important
that theoretical developments in formulating and mapping
gauge theories for a quantum simulation proceed alongside
the continual experimental progress that aims to significantly
improve capabilities and capacities of simulating platforms.

Trapped ions provide a pristine platform for quantum simu-
lations [22]. Given the extremely high level of control enabled
by laser-cooled and localized ions confined by electromag-
netic fields, exceedingly high fidelities in state preparation and
measurement, all-to-all entangling capability enabled through
control over the excitations of the motional normal modes,
and scalability potential of such systems, this architecture has
become a primary candidate for digital quantum computations
in recent years [9,53–66]. A unique feature of the trapped
ion architecture is that global addressing of the ions using
a few laser beams allows the realization of tunable long-
range spin-spin interactions in the chain. With no need for
individual addressability, systems of a few tens of ions have
been successfully realized, and analog simulations of sizable
quantum spin systems are made possible [67–75]. More com-
plex quantum many-body systems, such as those described by
gauge field theories, require either some degree of individual
addressing or higher-order spin interactions among different
species, as put forward in several proposals for simulating the
relativistic Dirac equation [5,76–78] a quantum field theory
of scalar fields [79], and 1+1D QED [9,80]. A milestone in
quantum simulations of lattice gauge theories (LGTs) using
trapped ions was achieved in Ref. [9], where the real-time
dynamics of 1+1D QED in a system of four trapped ions in
a linear trap was made possible through a digital protocol, but
the number of operations required for a Trotterized procedure
prevented a long evolution time to be achieved in the presence
of noise. While fully analog proposals exist for simulating
simple low-dimensional LGTs [80], none have been imple-
mented so far due to technical limitations.

It is important to classify gauge field theories of interest
in terms of whether analog simulation of their dynamics is
feasible given current technology. It is also essential to inves-
tigate whether fully analog implementations can circumvent
the accumulated noise due to digitalization [81], and whether

1Here and in the following, the first number denotes the space
dimension, and the second number refers to the time dimension.
When there is only one number, it is meant to refer to the space
dimension (or the spacetime dimension with a Euclidean metric).

the noise in an analog setup can be effectively mitigated.
Finally, it would be beneficial to assess the practicality of
existing ideas, and to develop new proposals for extending
the quantum toolkit of trapped ions, to enable a one-to-one
mapping between the engineered Hamiltonian of the ion-
laser quantum system to the dynamics of a fermionic system
coupled to gauge degrees of freedom (bosons). This paper
is a first step in addressing these questions. Here we focus
on identifying goals that can be achieved in the near term,
by specifying, in detail, practical proposals for a range of
accessible gauge theories.

The gauge field theories studied in this paper are examples
of the theories whose discretized formulations can be mapped
entirely to systems with spin- 1

2 degrees of freedom. One ex-
ample is 1+1D quantum electrodynamics (Schwinger model):
this model has similarities to quantum chromodynamics in
3+1D, including exhibiting a nontrivial vacuum. The second
example is 2+1D Abelian Chern-Simons theory coupled to
matter fields: this model is an example of a topological
gauge theory with applications in many areas of physics. The
last example we consider is 2+1D Z2 gauge theory with a
nontrivial phase diagram on a lattice, including exhibiting
confinement. We discuss the mapping of these theories to
spin systems, and present experimental protocols for realizing
these interactions in current and near-term ion-trap systems.
In order to provide a reference for upcoming implementations
in the case of the Schwinger model, detailed examples for four
and eight fermion-site theories will be presented.

A linear chain of trapped ions is often viewed as a platform
for simulating spin- 1

2 systems in 1+1D. However, once such
a system is augmented with individual addressing, it offers
far more possibilities for quantum simulations of arbitrary
spin systems, including those in higher dimensions. Such
proposals have been put forth in Ref. [82] and are explicitly
taken advantage of in the current work to simulate the dynam-
ics of the LGTs mentioned above. We also demonstrate the
accessibility of nearly perfect nearest-neighbor interactions by
simply controlling the lasers’ phases and intensities on each
ion, and demonstrate the sensitivity of the evolution to the
imperfections of the engineered Hamiltonian in the case of the
Schwinger model. By controlling intensities, phases, and fre-
quencies of laser beams addressing each ion, a highly accurate
mapping to spin-spin Hamiltonians with arbitrary interaction
profiles is enabled. An important feature of the protocols
devised in this work is a thorough optimization procedure that
maximizes the closeness to the desired Hamiltonian, while
simultaneously minimizes errors stemming from residual cou-
plings to motional excitations. The proposed experimental
scheme will have applications beyond the examples discussed
and is a general protocol for realizing interesting spin sys-
tems described by a Heisenberg Hamiltonian in arbitrary
dimensions.

We must emphasize that the sole goal of this work is
to engineer effective Hamiltonians in an ion-laser system to
realize, with high accuracy, the Hamiltonians of several lattice
gauge theories. What is achieved is a protocol for applying
the fundamental unitary operation e−iHt in a quantum simu-
lation, which is required for studying a range of dynamical
correlation functions in the theory, as well as state preparation
in a class of protocols. The ion-laser system, once tuned to
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reproduce the Hamiltonian of the desired system, can be used
to study all quantities of interest in the theory when combined
with a full quantum-simulation scheme.

The paper is organized as follows. Section II includes
details of ion-laser Hamiltonian considered in the scheme of
this work and presents the effective Hamiltonian obtained, its
range of validity, and the associated undesired contributions
that must be minimized subsequently. The two associated
Appendices A and B offer details on a particular experimental
platform, and a scheme that eliminates an unwanted bias term
in engineering the effective Hamiltonian. The full evolution
operator is further detailed in Appendix C. Section III presents
the example of the lattice Schwinger model, its purely spin
representation, and explicit experimental proposals for simu-
lating four and eight fermion-site theories. The former case is
implemented with a single detuning for each set of the lasers
used, while the latter takes advantage of a multifrequency,
multiamplitude scheme, requiring a thorough optimization of
interaction couplings. Additional results on the eight fermion-
site theory are presented in Appendix E. The results of the nu-
merical evaluation of the full evolution operator up to the or-
der considered are presented in another associated Appendix
(Appendix F) as well as in the Supplemental Material [83].
Section IV presents examples of LGTs in higher dimensions
and their dual spin representation, along with discussions on
their amenability to the quantum simulation scheme of this
work. We conclude in Sec. V by highlighting the differing
features of the scheme presented here compared with the
previous work, the significance of the results obtained, and
future extensions that may enable addressing a wider class of
gauge theories.

II. 1D CHAIN OF TRAPPED IONS AND ENGINEERED
EFFECTIVE INTERACTIONS

Consider N ions confined in a radio-frequency Paul trap
[84]. The “qubit” in this system can be encoded in two stable
internal levels of the ion, denoted in the following as |↑〉
and |↓〉. These states are separated in energy by an angular
frequency ω0 (with Planck’s constant h̄ = 1 here and in the
rest of the paper). Coherent operations on spin degrees of free-
dom are realized through stimulated Raman transitions using
two laser beams with a momentum-vector difference �k. The
physics of ion-laser interactions and the single and two-qubit
manipulations in an ion trap is well known [23,67,69,85–87].
However, the involved evolution of the system under multiple
pairs of Raman beams, which are needed for engineering
the Hamiltonians of models considered here, requires a few
technical novelties, and warrants a dedicated discussion which
will follow in this section. For clarity in the presentation,
further details of the proposed scheme and a number of
involved analytical forms will be provided in the appendices.

A. Devised scheme and intrinsic Hamiltonian

The ion-laser interaction Hamiltonian for a system of N
trapped ions can be written as [69]

Hint =
N∑

i=1

nL∑
L=1

�
(i)
L e−i�ω

(i)
L t+i�ϕ

(i)
L +i�k(i)

L ·�r(i)

× (
α0I(i) + α1σ

(i)
x + α2σ

(i)
y + α3σ

(i)
z

) + H.c. (1)

Index L in Eq. (1) runs over nL pairs of Raman beams.
�

(i)
L is the Rabi frequency associated with the laser L. �ϕ

(i)
L

denotes the phase difference between the two lasers in each
pair of Raman beams, �ω

(i)
L is the difference in their angular

frequency, namely, the beatnote frequency, and �k(i)
L is the

difference in their momentum k-vector. In general, each ion
is addressed with multiple pairs of Raman beams individually
[hence the superscript (i) on quantities], requiring both am-
plitude and frequency control of the beams. Such individual
addressing of the ions is widely used in digital ion-trap
platforms and can be ported to analog platforms in upcoming
experiments. �r(i) denotes the displacement vector of ion i
from its equilibrium position. The Pauli matrices σ (i) act on
the quasispin of ion i, and α0, α1, α2, and α3 are constants
related to the spin-dependent forces on the two states of the
qubit [69] and are controlled by the intensity, geometry, and
polarization of the laser beams; see Appendix B for further
details.

We assume that the confining potential is sufficiently
stronger along the transverse axes of the trap so that the ions
form a 1D crystal in space. With appropriate anharmonic axial
confinement forces, the ions can be nearly equally spaced
[88,89], with a typical spacing between adjacent ions of a few
micrometers. Due to the long-range Coulomb force among the
ions and the common trapping potential applied, the motion of
the ions can be described in terms of a set collective normal
modes. Then �r(i) in Eq. (1) can be expressed in terms of
phononic degrees of freedom, whose excitation energies are
quantized in units of the normal-mode frequencies of the
system. For the Hamiltonians of gauge theories considered
in this work, it is necessary to introduce multiple pairs of
bichromatic Raman beams directed at each ion, such that each
pair couples to only one set of the three independent sets of
normal modes. Such a scheme can be achieved with N indi-
vidual beams and three global beams. Each of the individual
beams will have three frequencies2 that are tuned sufficiently
apart such that each frequency will drive the qubit only by
pairing with one of the global beams. This setup will allow
to tune independently Hamiltonians acting along orthogonal
directions of the Bloch sphere with negligible undesired cross
couplings as shown below. The chosen directionality of the
beams can ensure that each global-individual pair will result
in a net k-vector along one of the three orthogonal principal
axes of the trap, X,Y , and Z; see Fig. 1.3 Here X and Y denote
the most-confined directions in the trap, which will have the
same normal-mode spectra for symmetric traps commonly
used. These will be denoted as transverse directions. The
least-confined direction is denoted as Z and is named the axial
direction.

2Or three sets of frequencies as required by the multifrequency
scheme of Sec. III.

3These Cartesian indices must not be confused with the x, y, and
z indices introduced on quasispins of the qubit. While the former
(upper-case letters) correspond to the components of laser fields’ k
vector, the latter (lower-case letters) correspond to the Bloch-sphere
axes in the qubit Hilbert space.
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FIG. 1. A schematic representation of a Raman-beams config-
uration that induces effective spin-spin interactions in the Heisen-
berg model. The N sets of individual beams can be chosen along
the (ξ X̂ , ξŶ , χ Ẑ ) unit vector (2ξ 2 + χ 2 = 1). Global beams (I ),
(II ), and (III ) are then chosen to propagate along (−ξ X̂ , ξŶ , χ Ẑ ),
(ξ X̂ , ξŶ ,−χ Ẑ ), and (ξ X̂ , −ξŶ , χ Ẑ ), respectively. These will cause
net �k vectors compared with the individual beams along the X̂ , Ẑ ,
and Ŷ directions, respectively. Chosen values of these parameters for
the examples of this work are given in Appendix A.

Consider now the ion-laser system in the interaction pic-
ture, in which all excitations arising from the free Hamiltonian

H0 =
N∑

i=1

ω0

2
σ (i)

z +
N∑

m=1

[
ωT

m

(
a†

mam + 1

2

)

+ωA
m

(
b†

mbm + 1

2

)
+ ωT

m

(
c†

mcm + 1

2

)]
+ const (2)

are rotated away by frequencies of the order of ω0, ωT
m, and

ωA
m.4 am (a†

m) annihilates (creates) a phonon excitation of the
transverse normal mode m with angular frequency ωT

m along
the X direction of the trap, �kI = �kI X̂ . Similarly, bm and
cm (b†

m and c†
m) are, respectively, the phonon annihilation

(creation) operators for the axial normal modes along the Z
direction, �kII = �kII Ẑ, and the transverse normal modes
along the Y direction, �kIII = �kIIIŶ .5 The corresponding
normal mode frequencies are denoted as ωA

m and ωT
m. Different

superscripts are introduced to distinguish the transverse and
axial normal modes which have different spectra. Finally, in
the Lamb-Dicke regime where 〈�k(i)�r (i)〉 � 1, and when
the laser frequencies are chosen such that all transitions
except for those near the first sideband transitions6 are far

4Although the axial modes are generally low in frequency, such a
rotating-frame approximation is still valid as long as lasers’ detun-
ings from these modes remain small compared to the sideband Rabi
frequencies of the axial motion.

5At this point, such assignments of a given set of normal modes
to one of the Hamiltonians in Eqs. (3)–(5) appear arbitrary. The
rationale behind the choices made will become clear in applications
of the scheme to nearest-neighbor Hamiltonians considered in this
work; see Sec. III.

6The nth blue (red) sideband transition for mode m adds (removes)
n quanta of motion each with frequency ωm.

off-resonant, the three sets of Raman-beam pairs at each ion
induce the laser-ion Hamiltonians of the form

H̃I =
N∑

i=1

i�(i)
I (eiμI t+i�ϕ

(i)
I + e−iμI t+i�ϕ

′(i)
I )

×
N∑

m=1

η
(i)
I,m(ame−iωT

mt + a†
meiωT

mt )(α1 − iα2)σ (i)
+ + H.c.,

(3)

H̃II =
N∑

i=1

i�(i)
II (eiμII t+i�ϕ

(i)
II + e−iμII t+i�ϕ

′(i)
II )

×
N∑

m=1

η
(i)
II,m(bme−iωA

mt + b†
meiωA

mt )(α1 − iα2)σ (i)
+ + H.c.,

(4)

H̃III =
N∑

i=1

i�(i)
III (eiμIII t+i�ϕ

(i)
III + e−iμIII t+i�ϕ

′(i)
III )

×
N∑

m=1

η
(i)
III,m(cme−iωT

mt + c†
meiωT

mt )
(
α0I(i) + α3σ

(i)
z

)
+ H.c., (5)

where σ
(i)
± = 1

2 (σ (i)
x ± iσ (i)

y ), and the tilde over the Hamil-
tonians implies the use of the rotated frame described
above. Here it is assumed that |μI | � ω0 where μI ≡ ω0 −
�ωI = −ω0 + �ω′

I . Similarly, |μII | � ω0 where μII ≡ ω0 −
�ωII = −ω0 + �ω′

II . On the other hand, for the Hamiltonian
H̃III , it is assumed that |μIII | � ω0 where μIII ≡ −�ωIII =
�ω′

III . Further, two distinct Raman-beam phase differences
are assigned to each of the red (unprimed) and blue (primed)

detuned frequencies of the beam. η
(i)
I,m =

√
(�kI )2

2MωT
m

b(i)
m , where

b(i)
m is the (normalized) normal-mode eigenvector components

between ion i and mode m, and M denotes the mass of the ion.

Similarly, η
(i)
II,m =

√
(�kII )2

2MωA
m

b(i)
m and η

(i)
III,m =

√
(�kIII )2

2MωT
m

b(i)
m for

the axial and transverse modes, respectively. For each pair of
Raman beams L, the same �kL vector is applied at the location
of each ion. α1 = 1

2 and α2 = 0 correspond to the well-known
Molmer-Sorenson scheme, already applied in a number of
experiments. In order to eliminate a bias σz interaction arising
from H̃III , it is essential that α0 is set to zero. With the scheme
presented in Appendix B, it is shown that one can achieve
this requirement by tuning the Raman-beam frequencies and
polarization vectors. We further set α3 = 1

4 for consistency
between the effective spin-spin couplings arising from H̃I , H̃II ,
and H̃III .7 Now by setting the phases of the blue- and red-
sideband detuned beams to �ϕ

(i)
I = 0, �ϕ

′(i)
I = π , �ϕ

(i)
II =

�ϕ
′(i)
II = �ϕ

(i)
III = �ϕ

′(i)
III = 0, the Hamiltonians H̃I , H̃II , and

7There will be no ambiguity in the overall constants in the Hamil-
tonian. Rescaling these coefficients by a constant means the Rabi fre-
quencies must be rescaled accordingly so that the expected strength
of the state-dependent force is produced on a given ion, and with
given choices of the internal levels for the qubit.
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H̃III can be seen to be proportional to σ (i)
x , σ (i)

y , and σ (i)
z ,

respectively.
Finally, an effective longitudinal magnetic field can be

introduced at the location of each ion by another N sets
of beams inducing a Stark shift to be tuned to the desired
value of the magnetic field. Alternatively, a Bz field can be
generated with the existing sets of Raman beams, i.e., by
shifting the frequency of red- and blue-detuned beams by B(i)

z .
This can be seen by noting that if the rotating frame that led to
Eqs. (3)–(5) is assumed to rotate with the Hamiltonian H0 +
1
2

∑N
i=1 B(i)

z σ (i)
z instead of H0, in addition to the interacting

Hamiltonians in Eqs. (3)–(5), an effective Hamiltonian

HB = −1

2

N∑
i=1

B(i)
z σ (i)

z (6)

is generated, but at the cost of the following change: μI →
μI + B(i)

z and μI → μI − B(i)
z to the laser detuning in the first

and second occurrences of μI in Eq. (3), respectively. Sim-
ilarly, μII must be replaced by μII → μII + B(i)

z and μII →
μII − B(i)

z in the first and second occurrences in Eq. (4),
respectively. The laser detuning μIII , on the other hand, re-
mains unchanged. Note that this scheme requires a frequency
control, as the detunings are now generally different at the
location of each ion.

B. Time evolution and effective Hamiltonian

With the Hamiltonians in Eqs. (3)–(6), an evolution oper-
ator can be formed by applying a Magnus expansion, taking
into account all contributions up to and including O(η2, ηBz )
in the exponent:

U (t, 0) = exp

{ ∑
α=x,y,z

[
N∑

i=1

φ
(α)
i (t ) σ (i)

α

+
∑
i, j

χ
(α)
i, j (t ) σ (i)

α ⊗ σ ( j)
α

⎤⎦⎫⎬⎭, (7)

where

φ
(x)
i (t ) =

N∑
m=1

α
(x)
i,m(t ) a†

m +
N∑

m=1

N∑
n=1

β
(x)
i,m,n(t ) b†

mcn + H.c., (8)

φ
(y)
i (t ) =

N∑
m=1

α
(y)
i,m(t ) b†

m +
N∑

m=1

N∑
n=1

β
(y)
i,m,n(t ) a†

mcn + H.c., (9)

φ
(z)
i (t ) = γ

(z)
i (t ) +

N∑
m=1

α
(z)
i,m(t ) c†

m

+
N∑

m=1

N∑
n=1

β
(z)
i,m,n(t ) b†

man + H.c. (10)

The definitions of the rest of the functions in Eqs. (7)–(10) are
provided in Appendix C.

When B(i)
z = 0, all contributions proportional to phonon

creation and annihilation operators in the exponent in Eq. (7)
are bounded in time, provided that μI �= μII �= μIII . As a
result, an effective Heisenberg model can be achieved when

t � |μI − ωT
m|−1

, |μII − ωA
m|−1

, |μIII − ωT
m|−1, so that the

terms linear in time in Eq. (7) (those proportional to χ
(α)
i, j )

dominate the evolution. In such a limit, χ
(α)
i, j → − i

2 J (αα)
i, j t

[see Eqs. (13)–(15)], and other contributions will be sub-
dominant. For practical (noisy) implementations, one needs
to minimize the spin-phonon entanglement arising from the
first term in the exponent in Eq. (7) at early times. This
is achieved with |η(i)

I,m�
(i)
I | � |μI − ωT

m|, |η(i)
II,m�

(i)
II | � |μII −

ωA
m|, and |η(i)

III,m�
(i)
III | � |μIII − ωT

m|. When B(i)
z �= 0, α

(x)
i,m(t ),

and α
(y)
i,m(t ) in Eqs. (8) and (9) develop an oscillatory time

dependence but with a linear growth in the magnitude of
its amplitude. These terms are proportional to B(i)

z σ (i)
y and

B(i)
z σ (i)

x . Assuming that the magnetic field is comparable in
size to the effective spin-spin couplings, such contaminating
terms do not severely impact the desired evolution as long
as |B(i)

z | � |η(i)
I,m�

(i)
I |, |η(i)

II,m�
(i)
II |. Unfortunately, this condi-

tion limits the size of (effective) magnetic fields that can be
studied in models considered below. Nonetheless, a range of
interesting possibilities can still be explored.

Under the conditions described above, the time-evolution
operator in Eq. (7) can be approximated as

U (t ) ≈ e−iHefft , (11)

where

Heff =
∑
i, j
j<i

[
J (xx)

i, j σ (i)
x ⊗ σ ( j)

x + J (yy)
i, j σ (i)

y ⊗ σ ( j)
y

+ J (zz)
i, j σ (i)

z ⊗ σ ( j)
z

] − 1

2

N∑
i=1

B(i)
z σ (i)

z . (12)

As a result, the individual-addressing scheme proposed here
enables analog quantum simulations of a rather generic
Heisenberg spin model. The spin-spin coupling matrices
in Eq. (12) are derived from discussions above (see also
Appendix C) and read

J (xx)
i, j = �

(i)
I �

( j)
I RI

N∑
m=1

b(i)
m b( j)

m

μ2
I − ωT

m
2 , (13)

J (yy)
i, j = �

(i)
II �

( j)
II RII

N∑
m=1

b(i)
m b( j)

m

μ2
II − ωA

m
2 , (14)

J (zz)
i, j = �

(i)
III�

( j)
III RIII

N∑
m=1

b(i)
m b( j)

m

μ2
III − ωT

m
2 . (15)

Here RL = (�kL )2

2M is the recoil frequency of the ion given the
lasers L = I, II, III .

It is worth noting that despite the case of a usual Molmer-
Sorenson transition where the starting Hamiltonian is propor-
tional to σx, the Magnus expansion in the scheme described
above is not cut off at any order in the Lamb-Dicke param-
eter, due to the nonzero commutation of Pauli operators in
Eqs. (3)–(6). It is therefore important to ensure that not only

| η
(i)
I,m�

(i)
I

μI−ωT
m
|, | η

(i)
II,m�

(i)
II

μII −ωA
n
|, | η

(i)
III,m�

(i)
III

μIII −ωT
m
| � 1 as stated before, but also

| (η(i)
I,m )(2p−2) (μI −ωT

m )
μI −pωT

m
|, | (η(i)

II,m )(2p−2) (μII −ωA
m )

μII −pωA
m

|, | (η(i)
III,m )(2p−2)(μIII −ωT

m )
μIII −pωT

m
| �

1 for integer p � 2. This guarantees that contributions from
the pth-sideband transitions are suppressed compared to
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the first-sideband transitions. These conditions are easier to
satisfy for transverse modes than the axial modes. This is
because the axial modes have lower frequencies, and their
corresponding Lamb-Dicke parameters are larger. Finally, one
notes that coherent operations on a single spin correspond to
the zeroth-order terms in Eq. (1) in the Lamb-Dicke limit,
and with �ω

(i)
L = ω0. Hence, the laser frequencies applied

must be far detuned from such “carrier transitions” of the
ions.

III. OPTIMIZED SPIN-SPIN HAMILTONIANS IN AN ION
TRAP: 1+1D SCHWINGER MODEL

A unique test bed for exploring theoretical and experimen-
tal proposals for quantum simulations of gauge theories is
the 1 + 1D QED, i.e., the Schwinger model. It is an Abelian
gauge theory, hence avoiding complexities of its non-Abelian
counterparts. It is also a low-dimensional theory, allowing
numerical and experimental studies of its approximate dy-
namics with finite resources. Despite these simplifications in
the formulation, the theory exhibits rich properties, similar
to those seen in more complex theories such as QCD. In
particular, phenomena such as confinement and spontaneous
symmetry breaking arise in the model. The spontaneous cre-
ation of electron-positron pairs in the time evolution of the
“vacuum” exhibits a clear signature of such nontrivial dynam-
ics. Since the time evolution of quantum states is, in general,
a computationally intractable problem with classical Monte
Carlo methods, addressing such a problem using a quantum
simulation platform is of significant value; see Refs. [8,9] for
digital implementations.

The strong-coupling dynamics of the Schwinger model
can be studied through nonperturbative LGT methods. In the
staggered formulation of Kogut and Susskind [90,91], the
(scaled) lattice Hamiltonian takes the form

H = −ix
N−1∑
n=1

[�†
neiθn�n+1 − �

†
n+1e−iθn�n]

+
N−1∑
n=1

L2
n + μ

N∑
n=1

(−1)n�†
n�n, (16)

where �n (�†
n) is a one-component fermion field that creates

(annihilates) an electron on the odd site while annihilates
(creates) a positron on an even site. Due to this distinction,
there is a staggered mass term in the Hamiltonian, with the
fermion (scaled) mass μ. θn is the U (1) gauge potential with
the corresponding gauge link eiθn originating at site n. The
latter is introduced in the Hamiltonian to render the fermion
hopping (kinetic) term gauge invariant. The pair creation
and annihilation in the theory originates from this term. The
corresponding electric field at site n is denoted as Ln (with the
operator relation [θn, Lm] = iδn,m), which adds a contribution
to the Hamiltonian due to the energy stored in the electric
field. The Hamiltonian in Eq. (16) is written in units of
ag2/2, where a denote the lattice spacing and g is the original
fermion-gauge field coupling. The dimensionless parameters
x and μ are related to dimensionful parameter g (with mass

dimension one) and the original mass m via: x = 1/(ag)2 and
μ = 2m/(ag2).8

The familiar Jordan-Wigner transformations �n =∏
l<n(iσ (l )

z )σ (n)
− and �†

n = ∏
l<n(−iσ (l )

z )σ (n)
+ can be applied

to Eq. (16) in order to map the fermionic degrees of freedom
to those of a qubit. A unique feature of the lattice Schwinger
model with open boundary condition is that the remaining
degrees of freedom that are bosonic, namely, gauge links
and electric field, can be entirely eliminated in favor
of new spin-spin interactions. Explicitly, by performing
gauge transformations σ

(n)
± → ∏

l<n e±iθl σ
(n)
± , and further

imposing the Gauss’s law Ln − Ln−1 = 1
2 [σ (n)

z + (−1)n], the
Hamiltonian becomes [9,92,93]

H = x
N−1∑
n=1

[σ (n)
+ σ

(n+1)
− + σ

(n+1)
+ σ

(n)
− ]

+
N−1∑
n=1

{
ε0 + 1

2

n∑
m=1

[
σ (m)

z + (−1)m
]}2

+ μ

2

N∑
n=1

(−1)nσ (n)
z . (17)

Here ε0 is the electric field flux into the first lattice site which
can be set to zero without loss of generality. To make explicit
the mapping of this Hamiltonians to that of the Hamiltonian
of the ion-laser system in our proposed scheme, Eq. (12), one
can note that Eq. (17) can be rewritten as

H = H (xx) + H (yy) + H (zz) + H (z), (18)

where

H (xx) = x

2

N−1∑
n=1

σ (n)
x σ (n+1)

x , (19)

H (yy) = x

2

N−1∑
n=1

σ (n)
y σ (n+1)

y , (20)

H (zz) = 1

2

N−2∑
m=1

N−1∑
n=m+1

(N − n)σ (m)
z σ (n)

z , (21)

H (z) = μ

2

N∑
n=1

(−1)nσ (n)
z − 1

2

N−1∑
n=1

(n mod 2)
n∑

l=1

σ (l )
z . (22)

H (xx) and H (yy) represent nearest-neighbor spin-spin interac-
tions and share the same coupling strength. H (zz) is a long-
range spin-spin interaction, representing the 1D Coulomb
interaction among the charged fermions.

Given the experimental setup presented in the previous
section, engineering the Schwinger Hamiltonian for given
values of N (which maps directly to the number of ions), x and
μ amounts to finding values of lasers’ Rabi frequencies, �

(i)
I ,

�
(i)
II , and �

(i)
III , and their detunings μI , μII , and μIII , as well

as B(i)
z values induced by a Stark shift, such that the ion-laser

8x and μ here should not to be confused by the spin x axis and the
lasers’ detunings, respectively. Their meaning should be clear in the
context they appear.
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FIG. 2. (a) The effective spin-spin coupling matrix J (xx) in Eq. (13) resulting from pairs of Raman beams addressing four individual ions at
the Rabi frequency �(i), where i = 1, . . . , 4. All beams are detuned from the transverse center-of-mass (c.m.) mode, ωT

1 = 2π × 4.135 MHz,
by the same frequency, μI − ωT

1 = −2π × 830 kHz. The Lamb-Dicke parameter, η, multiplying the Rabi frequencies in the figure is η =√
(�kI )2/4πMνT ≈ 0.068. (b) With the same detuning, the Rabi frequencies can be adjusted to match the magnitude of the J (xx)

i, j matrix
elements for | j − i| = 1 in (a), producing exactly equal magnitude on these elements, in addition to small non-nearest-neighbor contributions,
as shown in (b). Here the J (xx) matrix is tuned to produce H (xx) of the four fermion-site Schwinger model in Eq. (19) with x = 6. Numerical
values associated with this figure are provided in the Supplemental Material [83]. These values are obtained from a numerical study and do not
represent experimental findings.

Hamiltonian in Eq. (12) is equal to the Schwinger Hamilto-
nian in Eq. (18). This is an optimization problem that can be
solved straightforwardly provided that multiple laser frequen-
cies are used with each set of beams each with a corresponding
Rabi frequency [82]. With ñμL number of beatnote frequencies
on each pair of lasers L, the total number of free parameters is
NñμL , while the the number of independent nonzero elements
in each Ji, j coupling matrix is N (N − 1)/2. Empirically, it
is seen that a solution to the optimization problem can be
achieved with ñμL � N . It is, however, conceivable that in the
first generation of experiments planned, only the amplitude
control of Raman beams will be a reality. As a result, we
first focus on experimental proposals that do not require a
frequency control.

A. A single-detuning and multiamplitude scheme

With a single beatnote frequency on each pair of Ra-
man beams, the Schwinger Hamiltonian on small lattices
can be realized with good accuracy. For this example, an
ion trap consisting of 171Yb+ ions will be considered. The
specifications of this system are presented in Appendix A.
Consider the case of N = 4, and further set the values of
the parameters of the Schwinger Hamiltonian to x = 6 and
μ = 1. The Hamiltonian H (xx) can be achieved by first noting
that a certain detuning from the CM transverse mode with

the same amplitude on each ion produces the coupling matrix
shown in Fig. 2(a). This matrix can be systematically turned
into a nearest-neighbor form: the slope of the decline in the
strength of nearest-neighbor couplings from the center of the
chain can be determined and be used to systematically adjust
the Rabi frequencies in such a way that an equal strength
is achieved on all Ji, j with |i − j| = 1, as demonstrated in
Fig. 2(b). The most accurate nearest-neighbor Hamiltonian
achieved with this procedure presents a ∼3% contamination
on the non-nearest-neighbor elements and no contamination
on the nearest-neighbor elements.

As mentioned in Sec. II, the H (yy) effective Hamiltonian
is chosen to arise from the Raman beams that address the
axial modes of the ions. If the transverse modes were to be
addressed, the Raman beams would have to be detuned from
the modes by the same amount as those for the H (xx) Hamilto-
nian, as these appear with the same coupling in the Schwinger
Hamiltonian. This, however, would cause the dynamics to
deviate from the effective Heisenberg model in Eq. (12), given
the nonzero commutations between H̃I and H̃II in Eqs. (3) and
(4), generating phonon-dependent terms that grow (or decline)
linearly with time. Such contaminations are circumvented
by producing the H (yy) Hamiltonian with the Raman beams
that couple to the axial modes. Note that the axial modes
have a very different frequency spectrum compared with
the transverse modes. The same procedure as for the H (xx)
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FIG. 3. (a) The effective spin-spin coupling matrix J (yy) in Eq. (14) resulting from pairs of Raman beams addressing four individual ions at
the Rabi frequency �(i), where i = 1, . . . , 4. All beams are detuned from the axial c.m. mode, ωA

4 = 2π × 0.713 MHz, by the same frequency,
μII − ωA

4 = 2π × 3160 kHz. The Lamb-Dicke parameter, η, multiplying the Rabi frequencies in the figure is η = √
(�kII )2/4πMνA ≈ 0.081.

(b) With the same detuning, the Rabi frequencies can be adjusted to match the magnitude of the J (yy)
i, j matrix elements for | j − i| = 1 in (a),

producing exactly equal magnitude on these elements, in addition to small �3% non-nearest-neighbor contributions, as shown in (b). Here the
J (yy) matrix is tuned to produce H (yy) of the four fermion-site Schwinger model in Eq. (20) with x = 6. Numerical values associated with this
figure are provided in the Supplemental Material [83]. These values are obtained from a numerical study and do not represent experimental
findings.

mapping can be used to find the values of the laser beatnote
and Rabi frequencies that generate a nearest-neighbor inter-
action with these modes; see Fig. 3. As discussed at the end
of Sec. II, a critical check is to ensure the higher-sideband
contributions to the applied Molmer-Sorenson scheme are
not significant given the low normal-mode frequencies in the
axial direction and given the laser frequencies applied. It can
be shown that the largest contribution from these higher-
order sidebands is only a few percent of the contribution
from the first sideband and will be ignored in the current
proposal.

An effective H (zz) Hamiltonian that matches that of the
Schwinger model can be achieved with a single beatnote
frequency and by addressing the other set of transverse normal
modes of the ions. Here the values shown in Fig. 4 allow
the Ji, j coupling to be tuned to the desired values with
below-percent accuracy. However, in contrast with the case
of nearest-neighbor Hamiltonians, the procedure that finds the
adjusted Rabi frequencies for H (zz) is not systematic, making
it challenging to generalize such an ad hoc tuning procedure to
a higher number of ions. Finally, an effective H (z) Hamiltonian
can be induced using N sets of Raman beams with their Stark
shift tuned to reproduce H (z) of the Schwinger Hamiltonian
in Eq. (22). The values of the effective magnetic fields that
are required given the chosen parameters of the model are
depicted in Fig. 5.

It is crucial to verify that the laser parameters found in
such a mapping do not violate the conditions enumerated in
the previous section, and the true dynamics is that dictated by
the effective Heisenberg Hamiltonian in Eq. (12). This check
can be done by a numerical evaluation of all contributions
to the exponent of the evolution operator in Eq. (7), up to
and including O(η2, ηB). Here we assume that the experiment
can be initiated in a state with zero phonon occupation in all
modes. The results of this investigation are shown in Fig. 14
of Appendix F for the first ion, and in the Supplemental
Material [83] for the rest of the ions. As shown, the dominant
source of error is related to the nonzero commutations of HB

in Eq. (6) with H̃I and H̃II in Eqs. (3) and (4), introducing
effective magnetic fields along the x and y spin axes. These
are a small fraction of the desired field along the z direction,
but are, however, dependent upon the phonon occupation in
the system.

Hamiltonians of the lattice Schwinger model for a larger
number of fermion sites can be shown to be accessible
through the single-frequency and multiamplitude scheme de-
scribed, but deviations from the exact Hamiltonian can be
significant. For N = 10 and the nearest-neighbor Hamilto-
nian with transverse modes, the best parameters found give
rise to errors as high as ∼20% in the non-nearest-neighbor
elements. To investigate the effect of inexact Hamiltonians
on the dynamics of the Schwinger model, we have studied
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FIG. 4. (a) The effective spin-spin coupling matrix J (zz) in Eq. (15) resulting from pairs of Raman beams addressing four individual
ions at the Rabi frequency �(i), where i = 1, . . . , 4. All beams are detuned from the transverse c.m. mode, ωT

1 = 2π × 4.135 MHz,
by the same frequency, μIII − ωT

1 = 2π × 100 kHz. The Lamb-Dicke parameter, η, multiplying the Rabi frequencies in the figure is
η = √

(�kIII )2/4πMνT ≈ 0.068. (b) With the same detuning, the Rabi frequencies can be adjusted so that the J (zz) matrix produces the
long-range couplings in H (zz) of the four fermion-site Schwinger model in Eq. (21) with x = 6. Numerical values associated with this figure
are provided in the Supplemental Material [83]. These values are obtained from a numerical study and do not represent experimental findings.

a lattice Schwinger model with N = 4, x = 0.6 and μ = 0.1
with exact engineered Hamiltonians H (zz) and H (z) but with a
nearest-neighbor Hamiltonian H (xx)(=H (yy) ) that differs from
the exact form via nonzero non-nearest-neighbor elements.
Twenty such Hamiltonians are considered, as listed in the
Supplemental Material [83], with errors on the non-nearest-
neighbor elements in the range ∼3%–18%. The evolution of

FIG. 5. The effective magnetic field on each ion, B(i)
z , that pro-

duces the H (z) Hamiltonian of the Schwinger model, Eq. (22), for
N = 4 and μ = 1. Numerical values associated with this figure
are provided in the Supplemental Material [83]. These values are
obtained from a numerical study and do not represent experimental
findings.

the four fermion-site Schwinger model is then considered. The
quantity of interest here is the vacuum persistence amplitude
(VPA), defined as the (square) of the overlap of the state of
the system at time t , |ψ (t )〉 with the “vacuum” (a state in
the physical sector of the theory with no net electron-positron
pair), |ψ (vac)〉. This quantity is plotted for select times in
Figs. 6(b)–6(e) for all the 20 inexact Hamiltonians used in
the evolution. A procedure is described to estimate a mean
and uncertainty band from the most accurate Hamiltonians
employed. Nonetheless, as is seen in Fig. 6(a), during certain
times, the estimate of VPA deviates significantly from the
expected result, and this feature is amplified at longer times.

This observation promotes adopting a multifrequency and
multiamplitude scheme,9 as proposed previously in Ref. [82]
in the context of quantum simulation of the Ising model
on two-dimensional lattices. With this scheme, mapping of
the effective Hamiltonian of the ion-laser system to that of
the Schwinger model can be achieved with unprecedented
accuracy, as is shown in the following.

9We use the term frequency for the beatnote frequency of the
Raman beams unless it is identified as otherwise. A multifrequency
scheme, therefore, refers to when multiple beatnote frequencies are
used, while a multiamplitude scheme refers to when multiple Rabi
frequencies are applied.
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FIG. 6. (a) Time evolution of the state |ψ (vac)〉 = | ↓↑↓↑〉 corresponding to the strongly interacting vacuum of the four fermion-site lattice
Schwinger model with x = 0.6 and μ = 0.1. Open circles in the plots in (b)–(e) are the values of VPA at select times with 20 inexact H (xx)(=
H (yy) ) Hamiltonians, as listed in the Supplemental Material [83]. The nine data points that satisfy �(xx) ≡ J (xx)

1,3
2 + J (xx)

1,4
2 + J (xx)

2,4
2 � 10−4 are

chosen to define central values (dark-pink lines) and uncertainties (pink bands) on the VPA, and are compared with the exact expectations
(blue lines). The plot in (a) represents the exact time evolution of vacuum (blue curve) compared with the central value (dark-pink curve) and
uncertainty (pink band) on the VPA obtained from nine Hamiltonians that give rise to �(xx) � 10−4. Numerical values associated with these
plots are provided in the Supplemental Material [83]. These values are obtained from a numerical study and do not represent experimental
findings.

B. A multifrequency and multiamplitude scheme

The extension of the formalism presented in Sec. II to a
multifrequency scheme is straightforward. For example, the
effective spin-spin coupling engineered by Raman pairs I
generalizes to

J (xx)
i, j =

ñμI∑
m′=1

�
(i)
I,m′�

( j)
I,m′RI

N∑
m=1

b(i)
m b( j)

m

μI,m′ 2 − ωT
m

2 , (23)

where ñμI is the number of beatnote frequencies, and where
each detuning μI,m′ is associated with the Rabi frequency
�

(i)
I,m′ .10 Similarly, the J (yy)

i, j and J (zz)
i, j coupling matrices can

be obtained by replacements μII → μII,m′ , �
(i)
II → �

(i)
II,m′ ,

μIII → μIII,m′ , and �
(i)
III → �

(i)
III,m′ , where a summation over

m′ is assumed. For J (yy)
i, j , one must replace ωT

m with ωA
m. More

generally, the full time evolution operator in Eq. (7) can be
constructed by performing the changes described in the ion-
laser Hamiltonians in Eqs. (3)–(5). This introduces additional

10We remind that the effective spin-spin Hamiltonian arises from
a bichromatic pair of Raman beams, one detuned by −μI,m′ (red-
detuned) and one by μI,m′ (blue-detuned) from the carrier transition,
see discussions after Eq. (5).

off-resonant terms that would scale as the number of beatnote
frequencies introduced. One therefore needs to ensure that the
cumulative effect of such terms remains negligible compared
with the desired effective Heisenberg Hamiltonian.

Figure 7 demonstrates the success of this scheme in an
accurate generation of the long-range part of the Schwinger
Hamiltonian, H (zz), for the case of N = 8 ions. Here the cor-
responding optimization problem is solved (see Appendix D
for details), and the desired effective spin-spin Hamiltonian
is achieved with errors that are comparable with the machine
precision. The laser frequencies are fixed such that μI,m′ =
ωT

m′ + fs(ωT
m′ − ωT

m′+1), with fs = −0.5, and where m′ runs
from 1 to ñIII = 7, see the lower-right plot of Fig. 7.11 The
corresponding Rabi frequencies at the location of each ion are
plotted in the upper-right plot of Fig. 7. As is seen, a perfect
agreement between J (zz)

i, j and that in the Schwinger model with
x = 6 and μ = 1 is achieved. The reason for choosing a large
value of the coupling x in the original theory is to minimize

11In the convention of this work, the normal-mode frequencies
are ordered in a set from the highest value to the lowest value.
Therefore for the axial mode, ωA

N denotes the c.m. mode, while for the
transverse mode, the c.m. mode is ωT

1 . Because of this convention,
the normal-mode eigenvectors b(i)

m must be ordered accordingly for
the transverse and axial modes.
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FIG. 7. (a) The effective spin-spin coupling matrix J (zz) in Eq. (15) resulting from multiple pairs of Raman beams addressing N = 8
individual ions at the Rabi frequencies �

(i)
III,m′ shown in (b), where i = 1, . . . , 8 and m′ = 1, . . . , 7. The pairs of beams addressed at ion i

are detuned from the transverse c.m. mode by seven different frequencies, μIII,m′ = ωT
m′ + fs(ωT

m′ − ωT
m′+1) with fs = −0.5, as denoted in

(c). The Lamb-Dicke parameter, η, multiplying the Rabi frequencies in the figure is η = √
(�k)2/4πMνT ≈ 0.068. Here the J (zz) matrix is

tuned to produce H (zz) of the eight fermion-site Schwinger model in Eq. (21). Numerical values associated with this figure are provided in the
Supplemental Material [83]. These values are obtained from a numerical study and do not represent experimental findings.

the error to the effective Heisenberg Hamiltonian due to the
unbounded contributions arising from the commutations of
the Bz Hamiltonian in Eq. (6) and H̃I and H̃II in Eqs. (3) and
(5). Note that the desired effective Bz field in the Schwinger
Hamiltonian grows with N even in the limit μ = 0. Hence, in
order to keep the undesired contribution small compared with
the effective Hamiltonian, the strength of the nearest-neighbor
terms is taken to be stronger by setting x = 6. As is shown
in Appendix F for the first ion, and in the Supplemental
Material [83] for the rest of the ions, all the contributions
to the exponent in the full time-evolution operator (up to the
order considered) are small (and mostly bounded) compared
with those that constitute the Hamiltonian of the Schwinger
model. The laser parameters for a nearly exact engineering of
H (xx), H (yy), and H (z) are shown in Figs. 11–13 in Appendix E.
It must be noted that the optimization problem in all cases is
solved under two constraints: (1) the sum of Rabi frequencies
at the location of each ion is less than or equal to 2 MHz and
(2) the contribution to the full evolution from the first-order
terms, those proportional to coefficients α

(x)
i,m, α

(y)
i,m, and α

(z)
i,m in

Eqs. (8)–(10), remains below 0.5 at several random times up
to 1 ms, see Appendix D.

To summarize, we have provided detailed experimental
protocols for a fully analog simulation of the Schwinger
model for given parameters with (1) a scheme that requires
only individual amplitude and phase control of the laser beams
and engineers an approximate Schwinger Hamiltonian and (2)
a scheme that takes advantage of individual amplitude, phase,
and frequency control and engineers the desired Hamiltonian
with great accuracy (up to errors associated with the differ-
ence between the full ion-laser evolution and the effective
Heisenberg model, which are nonetheless assured to remain
negligible in the schemes proposed). It is clear that the second
scheme can be easily applied to any number of ions at the cost
of introducing a multitude of laser frequencies, the number
of which grows with the number of ions. This can be already

achieved with current technologies for up to ∼30 ions, and
most importantly is scalable, as it involves a linear growth
in the complexity of the classical control hardware of the
experiment.

In the following, other examples of LGTs whose dynamics
can be mapped onto a spin- 1

2 system will be discussed. The
goal is to only point out the potential of an ion-trap quantum
simulator in addressing more complex spin systems by pro-
viding examples of relevant gauge theories. Explicit scenarios
for given ion-trap architectures are straightforward to obtain,
following optimization strategies presented for the case of the
Schwinger model.

IV. ANALOG SIMULATIONS OF SYSTEMS IN HIGHER
DIMENSIONS WITH A 1D CHAIN OF IONS

With a generic Heisenberg model and an effective magnetic
field engineered in Sec. II, it is clear that a wide range of
couplings among spins can be tailored, as was demonstrated
for the case of the Schwinger model. In particular, as seen
in Sec. III, the H (αα) with α = x, y, z does not have to be
necessarily nearest neighbor or of any particular form, as the
multifrequency, multiamplitude scheme of this work allows
an arbitrary Ji, j to be produced. This observation implies that
spin systems in higher spatial dimensions can be engineered
as well, as was also noted in Ref. [82]. One only needs to
map the points on a 2D or 3D lattice to a linear chain of
ions along with their corresponding couplings. Of course, with
a fixed number of ions in a given experiment, this means
that the finite-size effects in the dynamics of the system
under study will be larger, such as in the case of square and
cubic lattices the spatial extent of the system will be N1/2

and N1/3, respectively. Nevertheless, this possibility implies
that a linear quantum system can be used as a platform for
analog simulations of theories in any dimension, bringing
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the versatility of such an analog platform closer to its digital
counterpart.

A. 2+1D Abelian Chern-Simons theory coupled to fermions

As an example of an interesting field theory in 2 + 1D,
consider the Chern-Simons theory coupled to fermions. This
theory is of broad impact on a range of problems in theoretical
physics, from the theory of the integer and fractional quantum
Hall effects to knot theory and parity anomalies in quantum
field theory; see Ref. [94] for a review. Since the theory is
topological in the continuum, the construction of a discretized
counterpart of the theory turned out to be nontrivial as a
lattice has explicit reference to a given coordinate system
and metric. However, it has been shown [95,96] that one can
still formulate a U(1) LGT that retains gauge invariance on
arbitrary 2D planar graphs, has no local excitations (hence
is topological), and in the long-wavelength limit approaches
the Chern-Simons theory in the continuum. As is discussed in
Ref. [96], a lattice formulation of the Chern-Simons theory is
invaluable in investigations of fractional Chern insulators that
occur in given lattice geometries. As a result, it is interesting
to ask if a quantum-simulation protocol for this theory can be
devised on the simulating platform of this work.

A known result [95] in the context of the generalized
Jordan-Wigner transformation in higher dimensions is Frad-
kin’s proof of equivalence between the spin- 1

2 XY model on
a 2D Bravais lattice and a Chern-Simons theory in 2+1D
coupled to fermions, provided that the strength of the Chern-
Simons’ term in the Lagrangian density,

LCS = a†(x)iD0a(x) −
∑
j=1,2

[a†(x)eiAj (x)a(x + n̂ j ) + H.c.]

− θ

4
εμνλAμ(x)Fνλ(x), (24)

is θ = 1
2π

[95]. Here time is assumed to be continuous while
spatial coordinates are defined on a square lattice, i.e., x =
(t, n) where n is a vector whose components are integer
multiples of the lattice spacing.12 μ, ν = 0, 1, 2 with the
zeroth direction being the time direction, a is a complex
spinless fermion field, Aμ is the gauge field, Dμ = ∂μ − iAμ

is the covariant derivative, Fμν is the field-strength tensor:
Fμν = ∂μAν − ∂νAμ, and εμνλ is the Levi-Civita symbol. Note
that the A0 field does not have any dynamics and can be
set equal to zero with the choice of a temporal gauge. The
physical sector of the theory, i.e., states that satisfy the Gauss’s
law, can be identified from the condition δS

δA0
= 0, where S is

the action. These states then correspond to those for which
a†(x)a(x) − θεi j[Aj (x + n̂i ) − Aj (x)] = 0. It is also clear that
the Hamiltonian of the theory vanishes in the absence of
matter fields, which is a desired feature of the topological
theory. In the presence of matter fields, the Hamiltonian
corresponding to Eq. (24) is

HCS =
∑

n

∑
j=1,2

[a†(n)eiAj (n)a(n + n̂ j ) + H.c.]. (25)

12For a general formulation on 2D planar lattices, see Refs. [96,97].

Note that the time dependence of the fields is now implicit
considering the Hamiltonian equations of motion. As is shown
in Ref. [95], the gauge links can be eliminated from the
Hamiltonian with the use of Gauss’s law, at the cost of
changing the equal-time commutation relation of fermions.
This is in fact a great advantage since when θ = 1

2π
(or in

general when 1
2θ

is an odd multiple of π ), the new commu-
tation relations are those of hardcore bosons, i.e., the spin- 1

2
matrices. As a result, this procedure can be realized as a 2D
generalization of the familiar Jordan-Wigner transformation.
Explicitly, by performing the transformations a → eiφa ≡ ã
and a† → a†e−iφ ≡ ã†, where Aj (n) ≡ φ j (n + n̂i ) − φ j (n),
one arrives at

HCS =
∑

n

∑
j=1,2

[σ (n)
+ σ

(n+n̂ j )
− + H.c.], (26)

where the following identifications are assumed: σ
(n)
+ =

ã†(n), σ (n)
− = ã(n), and σ (n)

z = 1 − 2a†(n)a(n). Equation (26)
clearly corresponds to an XY spin model. Note that a param-
eter h could be introduced to control the magnitude of the
hopping term in the Hamiltonian.

To perform an analog simulation of such a 2D XY model
within the scheme presented in Sec. II requires optimizing a
(Ji, j ≡) J (XX )

i, j = J (YY )
i, j matrix by performing a multifrequency,

multiamplitude Molmer-Sorenson scheme using the trans-
verse and axial normal modes of motion. For a 4 × 4 lattice
in the target theory, a system of N = 16 ions can be used as is
shown in Fig. 8, along with the required Ji, j matrix. Obtaining
the laser frequencies and amplitudes is a straightforward
optimization process, as detailed in the previous section, and
in fact machine precision accuracy can be achieved, as demon-
strated in Ref. [82] for similar geometry and coupling profiles.
Finally, we should remark that the full Hamiltonian in such a
2+1D Abelian LGT must include the energy stored in electric
and magnetic fields, giving rise to the Maxwell-Chern-Simons
theory [98,99].13 Aside from the question of what is the proper
formulation of a discretized Maxwell-Chern-Simons theory,
one needs to account for the full dynamics of the gauge fields
by mapping them to those in an ion-trap quantum-simulation
platform, which is beyond the scope of the present work.

B. 2+1D pure Z2 lattice gauge theory

ZN gauge theories are discrete Abelian gauge theories that
given their simple underlying symmetry have long served as
a testbed for gaining deeper perspectives on gauge theories.
Despite their simple structure, they can have nontrivial phase
diagrams exhibiting, e.g., a confining phase. In fact, since
Z3 is the center of the SU(3) group, the confinement in the
Yang-Mills theory is attributed to the Z3 symmetry. These
gauge theories have been the focus of numerous theoreti-
cal and experimental proposals for quantum simulation of
gauge theories, in particular using neutral atoms in optical
lattices [36,52,101]. An interesting feature of ZN is its duality
with spin models. This connection has been developed over

13See also Ref. [100] for discussions regarding a non-Abelian case,
the Yang-Mills-Chern-Simons theory.

023015-12



TOWARDS ANALOG QUANTUM SIMULATIONS OF LATTICE … PHYSICAL REVIEW RESEARCH 2, 023015 (2020)

FIG. 8. (a) A 4 × 4 lattice of spins (s = 1
2 ) with nearest-neighbor interactions, corresponding to the σx ⊗ σx (or equivalently σy ⊗ σy)

interactions in the Hamiltonian in Eq. (26) with n = (nx, ny ), where nx (ny) runs from 0 to 3, and where an open boundary condition is adopted.
The nearest-neighbor interactions of a select site are depicted in green links. (b) This 2D configuration can be mapped to a 1D chain of ions,
along with the couplings of the select site in the new configuration. The obtained 1D coupling matrix Ji, j is shown in (c).

decades [102], starting from Wegner’s demonstration of such
a duality for the case of a Z2 LGT [103], and has inspired
similar duality constructions for non-Abelian gauge theories
such as SU(N) [104]. Further, recent work has suggested that
the 4D Z2 LGT provides a complete model for all classical
spin models and all Abelian discrete LGTs [105,106].

The example that will be presented here is a 2+1D Z2 LGT
that is dual to a 2D Ising model and is therefore amenable to
the quantum simulation protocol of this work. The Hamilto-
nian of the 2+1D Z2 LGT can be expressed with a pair of
conjugate spin operators {σx(l ), σz(l )}, where σx(l ) = eiπE (l )

and σz(l ) = eiA(l ). Here l denotes a link on the 2D spatial
lattice, A(l ) is the gauge field evaluated on link l with A(l ) =
{0, π}. E (l ) is the corresponding “electric field” with E (l ) =
{0, 1}. Note that in order to keep the presentation simple, we
have not used bold-faced quantities for the two-dimensional
vectors A(l ) and E (l ), as their directionality on the 2D plane
is implicit from the directionality of the link arguments. The
lattice Hamiltonian of such a pure gauge theory consists of
“electric” and “magnetic” terms:

H2+1D Z2 = −
∑

l

σx(l ) − λ
∑

p

σz(l1)σz(l2)σz(l3)σz(l4).

(27)

Here the first (second) sum runs over all links (plaquettes) on
the 2D lattice, and open boundary conditions are assumed. A
plaquette is defined as the product of four gauge links staring
from the lower-left corner and moving counterclockwise; see
Fig. 9(a). The Hamiltonian in Eq. (27) remains invariant under
a local gauge transformation which flips the sign of σz on links
sharing site n, but does not affect σx on links sharing the same
site. The Gauss’s law corresponding to this symmetry defines
the physical sector of the theory, namely, states for which the

eigenvalue of the Gauss’s law operator G(n) = ∏
n σx(ln) is

unity, where ln denotes all the four links that meet at point n.
To establish a duality relation with the 2D Ising model,

the gauge invariance can be taken into account to (1) fix
the gauge conveniently such that σz on all links along one
of the spatial directions is set to unity and (2) use the op-
erator identity G(n) = 1 in the physical Hilbert space of the
theory to replace σx along the same space direction as in
(1) with those along the other direction. These two steps in-
spire the replacements σz(l1)σz(l2)σz(l3)σz(l4) → σx(p), and∏

l̃ ′�l̃ σx(l̃ ′) → σz(p) (which is allowed as the new {σx, σz} set
has the same commutation relations as the original set). In the
first replacement rule, p denotes the plaquette formed by links
l1, l2, l3, l4, and in the second rule, it denotes the plaquette
whose left bottom corner is the point at which l̃ starts. The
product is over all links prior to and including link l̃ , and tilde
is used to denote the space dimension for which the gauge
remains unfixed. It is now easy to see that in terms of the new
spin operators, the Hamiltonian in Eq. (27) can be written as

H2D Ising = λ

⎡⎣−
∑

p

σx(p) − 1

λ

∑
〈p,p′〉

σz(p)σz(p′)

⎤⎦
≡ −λ

∑
n

σ (n)
x −

∑
n

∑
j=1,2

σ (n)
z σ

(n+n̂ j )
z , (28)

where in the last line, n refers to points on the “dual” lattice
defined by the center of spatial plaquettes in the original
lattice; see Fig. 9. 〈p, p′〉 in the first line denotes the nearest-
neighbor plaquettes. For further details on the expected phase
diagram of the theories at different coupling regimes, see, e.g.,
Ref. [102].

The duality between Eqs. (27) and (28) allows to simulate
the dynamics of a Z2 LGT in 2+1D using a chain of ions
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FIG. 9. (a) A 5 × 5 spatial lattice corresponding to the Z2 Hamiltonian in Eq. (27). An open boundary condition is adopted, and a select
plaquette term in the Hamiltonian is shown. The center of the plaquettes defines the sites of a dual lattice, as depicted by the green points, and
are separately shown in (b). Such a 2D configuration corresponds to the Ising Hamiltonian in Eq. (28), which can now be mapped to a 1D
chain of ions, as shown in (c).

in 1D whose interactions are tailored to correspond to the
Ising Hamiltonian, as discussed in the previous example of
this section. The correspondence between the original 2D
lattice, the dual lattice, and the chain of ions is depicted in
Fig. 9. Engineering the nearest-neighbor σz ⊗ σz interactions
was detailed in Sec. II, and the additional global transverse
magnetic field can be easily introduced by performing single-
qubit rotations, with an angle determined by the coupling λ in
the original theory.

V. CONCLUSION AND OUTLOOK

In this paper, we took on the question of how to best
leverage the current technologies in ion-trap analog quantum
simulators to engineer the Hamiltonian of gauge field theories.
Towards this goal, gauge theories that can be experimentally
realized in such platforms in the near future are enumerated
and are shown to be amenable to a particular quantum-
simulation scheme devised in this work. Experiments that
will take advantage of the proposals of this work are being
planned. The highlights of the scheme presented, and its
promising applications, can be summarized as the following:

(1) N sets of laser beams are used to address individ-
ual ions in a 1D chain. With the addition of three global
laser beams, the Hamiltonian of a Heisenberg model can be
engineered. Certain orientations and frequencies of the beams
compared with each other (see Fig. 1) allow σ (i)

x ⊗ σ
( j)
x , σ (i)

y ⊗
σ

( j)
y , and σ (i)

z ⊗ σ
( j)
z spin-spin interactions to be generated

with negligible couplings among different Raman processes.
Each set of lasers couples to one set of normal modes of
motion (two transverse and one axial), allowing arbitrary spin-
spin couplings to be engineered. Our scheme is inspired by
that presented in Ref. [67] but does not require an asymmetric

trap in the transverse directions, as long as one is interested in
a Heisenberg XYZ and XXZ models (see the example of the
Schwinger model in Sec. III).

(2) The experimental scheme of this work offers the capa-
bility of engineering a range of interesting dynamics with a
single beatnote frequency for each set of the lasers, denoted
as μL with L = I, II, III , but with tunable phases and with
Rabi frequencies �

(i)
L at the location of each ion. Moreover,

introducing a frequency control to the system, as is common
in the digital ion-trap platforms, allows arbitrary spin-spin
Hamiltonians to be engineered with unprecedented accuracy.

(3) The frequency control allows an effective local mag-
netic field to be engineered via asymmetrically shifting the
frequency of the red- and blue-detuned Raman beams, elim-
inating the need for introducing another N laser beams to
induce local Stark shifts on the ions.

(4) Engineering an arbitrary Heisenberg Hamiltonian is
enabled in this work by a thorough optimization procedure
that minimizes the contributions arising from unwanted cou-
plings to phonon excitations, contributions that drive the
dynamics away from the effective spin-spin Hamiltonians.
This is a crucial requirement for a reliable quantum simulation
that is addressed for the first time in this work. The purely
spin formulation of the lattice Schwinger model exists and
corresponds to a Heisenberg XXZ model with both short- and
long-range interactions, and with an effective local magnetic
field. The optimization procedure described above was ap-
plied to this example with N = 8, and can be scaled straight-
forwardly to any number of ions.

(5) In this work, equal-size nearest-neighbor couplings
along the spin axes x̂ and ŷ are achieved through coupling
to transverse and axial modes of the motion, respectively,
eliminating any significant undesired coupling between the
two resulting interacting Hamiltonians in the evolution given
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the Raman-beam detunings required. This feature does not
demand the use of a strong effective magnetic field to in-
duce such nearest-neighbor interactions [70,71,107], with its
known limitations [108]. Although it may be challenging
to implement such a scheme in larger chains of ions with
low axial normal-mode frequencies, ideas such as that pro-
posed in Ref. [109] may allow a scalable scheme in future
investigations.

(6) Another feature of the proposed scheme is a high de-
gree of flexibility in tuning the spin-spin interaction couplings
of arbitrary forms along each axis of the qubit independently.
This feature, which for example is not offered in single
Molmer-Sorenson schemes [110], is shown to be particularly
useful for engineering the Hamiltonians of gauge theories
considered in this work.

(7) The high level of control allows quantum simulation
of models in higher dimensions. Two interesting examples of
lattice gauge theories presented in this work (see Sec. IV) are
Abelian Chern-Simons theory coupled to matter, and a Z2 pure
gauge theory, both in 2+1D, whose dynamic can be mapped
to a planar Ising model with nearest-neighbor interactions.
Such capability opens up the possibility of analog quantum
simulations of systems beyond what has been possible to date.

A few directions can be recognized as natural extensions of
the ideas presented in this paper. These include the following:

(1) There are a range of methods that lead to a trun-
cated angular-momentum representation of the gauge de-
grees of freedom in LGTs, such as the quantum link models
[36,38,44], or the use of a tensor-network construction in
Abelian gauge theories coupled to matter [44,111]. With the
manipulation of a larger number of internal levels of the ions,
the approach advocated in this paper can be applied to engi-
neer interactions of spin systems with s � 1

2 . An experimental
realization of a spin Hamiltonian with s = 1 is presented in
Ref. [112], and can be extended to allow quantum simulation
of select gauge theories in spin-1 representations.

(2) For a wide range of phenomenologically interesting
lattice gauge theories for which a purely spin representation
does not exist, it is essential to extend the toolkit of ion-
trap analog simulation to leverage the control over phononic
degrees of freedom. This will require further technologi-
cal advancement on the experimental front, as well as new

proposals for engineering gauge and gauge-matter interac-
tions in a highly controlled spin-phonon system.

ACKNOWLEDGMENTS

We are grateful to Jiehang Zhang for his encouragement
during the early stages of this interdisciplinary collaboration.
We acknowledge valuable discussions with Norbert Linke and
Yannick Maurice. Z.D. is supported in part by the Maryland
Center for Fundamental Physics, University of Maryland,
College Park. Z.D. and A.Sh. are supported in part by the
U.S. Department of Energy (DOE), Office of Science, Office
of Advanced Scientific Computing Research (ASCR) Quan-
tum Computing Application Teams program, under fieldwork
proposal number ERKJ347. A.Sh. is further supported by
the National Science Foundation (NSF) through the Bridge
to the Doctorate Fellowship. M.H. and A.Se. are supported
by the NSF’s Physics Frontier Center at the Joint Quantum
Institute (JQI), and by the Air Force Office of Scientific
Research, Multidisciplinary University Research Initiative
(MURI). C.M. and G.P. are supported by the U.S. DOE Basic
Energy Sciences (BES) Quantum Computing in Chemical and
Material Sciences Program, by the U.S. DOE High-Energy-
Physics (HEP) Quantum Information Science Enabled Dis-
covery (QuantISED) Program, by the Army Research Office
(ARO) MURI on Modular Quantum Circuits, and by the
NSF’s Physics Frontier Center, PFC@JQI (PHY1430094).

APPENDIX A: EXPERIMENTAL SPECIFICATIONS OF
THE TRAPPED ION SYSTEM CONSIDERED FOR

EXAMPLES OF THIS WORK

In order to provide explicit protocols in the examples
provided in Sec. III and Appendix B, the ion-trap system that
is considered is assumed to share similar features as those
realized in Refs. [72–74]. Nonetheless, the general procedure
for obtaining these protocols can be identically applied to sys-
tems containing other species of ions, and exhibiting different
laser characteristics.

Consider N 171Yb+ ions confined in a radio-frequency
Paul trap [84]. The “qubit” in this system has been com-
monly encoded in a magnetically insensitive clock state of

FIG. 10. The level diagram of 171Yb+ relevant to the scheme presented in this Appendix.
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TABLE I. Transverse normal modes of the motion of four (upper table) and eight (lower table) ions in the Paul trap considered in this
work. Frequencies are in kHz.

Mode m 1 2 3 4

ωT
m/2π 4135.100 4073.166 3984.525 3871.330

ωA
m/2π 2175.334 1718.602 1234.952 713.000

Mode m 1 2 3 4 5 6 7 8

ωT
m/2π 4135.100 4073.166 3983.765 3868.867 3728.561 3561.477 3364.856 31 341.543

ωA
m/2π 3880.802 3473.033 3055.852 2627.192 2184.079 1722.123 1234.952 713.000

171Yb+. However, for the quantum simulations of the gauge
theories considered in this study, magnetically sensitive hy-
perfine levels |F = 0, mF = 0〉 and |F = 1, mF = −1〉 will
be needed; see Fig. 10. The former (latter) level corresponds
to sz = − 1

2 ( 1
2 ) component of a quasispin operator. These are

split in energy by a corresponding frequency ν0 ≡ ω0/2π =
12.642819 GHz + 310.8B2

0 Hz/G2, where B0 denotes an ex-
ternal magnetic field [113]. Highly efficient state initialization
and readout are performed using a laser tuned to 369.5 nm,
which strongly couples the ground 2S1/2 and excited 2P1/2

states.
For the Paul trap considered in the proposals of this work,

νA = 0.713 MHz and νT = 4.1351 MHz, where νA and νT

are the axial and transverse frequencies of the confining
potential, respectively. The axial and transverse normal-mode
frequencies in such a trap are tabulated in Table I for N = 4
and N = 8. Finally, to achieve the values of Lamb-Dicke
parameters used in the examples presented in Sec. III and
Appendix E, the lasers are aligned such that ξ = 0.6960 and
χ = 0.1767, where ξ and χ are introduced in the caption of
Fig. 1. As a result, the angles between the individual beams
and the three global beams (I ), (II ), and (III ) are 88.21◦,
20.36◦, and 88.21◦, respectively.

APPENDIX B: TUNING SPIN-DEPENDENT FORCES FOR
THE PROPOSED SCHEME

The Hamiltonian H̃III in Eq. (5) is proportional to the op-
erator α0I(i) + α3σ

(i)
z . As was derived in Sec. II, the effective

spin-spin interaction H (zz) arise from [H̃III , H̃III ] commutation
at O(η2) in the Magnus expansion of the time-evolution
operator. When α0 �= 0, this commutation creates an effective
σ (i)

z Hamiltonian with a strength twice that of the effective
σ (i)

z ⊗ σ (i)
z Hamiltonian. Such a bias magnetic field introduces

a significant error to the desired evolution. Any attempt to null
out such a local magnetic field with additional sets of lasers
will cause further nonzero commutations with the H̃I and H̃II

Hamiltonians, which are generally non-negligible given the
strength of the bias magnetic field.14 It is therefore important
to investigate solutions that eliminate the term proportional
to α0 in the native Hamiltonian in Eq. (5). One such solution
relies on tuning the polarizations and detuning of the Raman
beams used to produce the H̃III Hamiltonian such that the

14Such a bias magnetic field term is discussed in Ref. [69].

spin-dependent force acting on the state |↑〉 is negative to that
on the state |↓〉: F↑ = −F↓. This then sets α0 = 0, which is
the choice used in our proposal in Sec. II. To demonstrate this
solution, we consider the example of 171Yb+; however, the
same approach can be taken to find schemes that work for
other ion traps as well.

As mentioned in Appendix A, the qubit is encoded in
the magnetically sensitive |↑〉 ≡ |F = 0, mF = 0〉 and |↓〉 ≡
|F = 1, mF = −1〉 hyperfine 2S1/2 states of 171Yb+. Con-
sider a set of Raman beams with frequencies ωr and ωb,
detuned from 2P1/2 manifold by �. In order to produce a
spin-dependent force as discussed in Sec. II, the beams have to
be detuned from each other by the motional mode’s frequency
ωm, that is �ω = ωb − ωr = ωm; see Fig. 10. In order to
find appropriate polarizations and detuning that allow a pure
σz Hamiltonian, three quantities must be calculated in this
scheme: (1) the Stark shift induced by red and blue lasers
in the Raman pair, (2) the spontaneous emission rate from
excited states, and (3) the spin-dependent force on the qubit.
Quantity (3) must be studied to deduce the conditions under
which F↑ = −F↓, while at the same time quantity (1) must be
ensured to vanish, and quantity (2) must be minimized.

Let us denote the polarization of each beam by ε̂r =
r−σ̂− + r0π̂ + r+σ̂+ and ε̂b = b−σ̂− + b0π̂ + b+σ̂+, where
|r−|2 + |r0|2 + |r+|2 = |b−|2 + |b0|2 + |b+|2 = 1. In calcu-
lating these quantities, matrix elements in the form
〈α′F ′m′

F | d · ε̂ |αFmF 〉 need to be evaluated, where d is the
electric dipole operator, and α represents all other quantum
numbers of the state besides the total spin F (nuclear spin
added to electron’s total angular momentum) and its compo-
nent along the quantization axis, mF . Such a matrix element
can be evaluated using [114]:

〈α′F ′m′
F | d.ε̂ |αFmF 〉

= (−1)J ′+I−m′
F
√

(2F + 1)(2F ′ + 1)

{
J ′ F ′ I
F J 1

}
×

(
F 1 F ′

mF q −m′
F

)
〈α′J ′||d||αJ〉. (B1)

Here q = −1 for the σ̂−-polarized light, q = 0 for the π̂ -
polarized light, and q = 1 for the σ̂+-polarized light. I and
J denote the total nuclear spin and the electron’s total an-
gular momentum, respectively. “(·)” corresponds Wigner’s
3 j symbol, while “{·}” corresponds to Wigner’s 6 j symbols.
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The reduced matrix element 〈α′J ′||d||αJ〉 is related to the
spontaneous emission rate γ between states with J and J ′
quantum numbers for an atom coupled to free space:

|〈α′J ′||d||αJ〉|2 = c0(2J ′ + 1)γ , (B2)

where c0 is a number that depends on the transitions. For
simplicity, in the following we assume that the 2P1/2 and the
2P3/2 states have the same c0 and γ .

1. Stark shift

In the limit where � � γ , the Stark shift for |mS〉 =
|↑〉 , |↓〉 is given by [115]

δStark(mS ) = 1

4

∑
j=r,b

∑
i

|〈mS|d · ε̂ jE j |i〉|2
�i

, (B3)

where �i is the detuning from the states that are virtually oc-
cupied, and Ej is the electric-field amplitude. Using Eq. (B1),
the net Stark shift is found to be

δStark(↑) − δStark(↓)

= c0γωF

122�(� − ωF )
(|b−|2 + |r−|2 − |b+|2 − |r+|2). (B4)

As is evident, by choosing |b−|2 + |r−|2 = |b+|2 + |r+|2, the
net shift can be set to zero.

2. Spontaneous emission

The spontaneous emission rate can be evaluated using
[115]

RSE = 1

4

∑
i

∑
j=r,b

∑
mS=↓,↑

PmS γi| 〈mS| d · ε̂ jE j |i〉 |2
�2

i

, (B5)

where PmS is the probability of being in the mS ground state.
Under the constraint that sets Eq. (B4) to zero, one finds that

RSE = c0γ
2(2 + |r0|2 + |b0|2)

12
√

(1 + |r0|2)(1 + |b0|2)

[
1

�2
+ 2

(� − ωF )2

]
.

(B6)

As is seen, with the choice � = (
√

2 − 1)ωF one is close to a
local minimum of the spontaneous emission rate.

3. Spin-dependent force

Finally, the spin-dependent force can be found by consid-
ering the resonant two-photon Raman Rabi rate [115]

�(mS ) = ei(ϕb−ϕr )

4

∑
i

〈mS| d · ε̂rEr |i〉 〈i| d · ε̂bEb |mS〉
�i

,

(B7)

where ϕr and ϕb are the phases of the red- and blue-
detuned beams, respectively. With �ϕ ≡ ϕb − ϕr = 0 and
� = (

√
2 − 1)ωF , one finds that

�(↓) = −γ (b0r∗
0 + b−r∗

− + b+r∗
+)

12ωF
, (B8)

�(↑) = γ [−2b0r∗
0 + (2 + 3

√
2)b+r∗

+ − 3(2 + √
2)b−r∗

−]

24ωF
.

(B9)

In order to satisfy the condition �(↓) = −�(↑) or in turn
F↑ = −F↓,15 a choice for the polarization vectors is

ε̂b = 3

2 − √
2

(
−1,

√
2 + 3√

2
, 1

)
, (B10)

ε̂r = 3

2 − √
2

(
1,

√
2 + 3√

2
, 1

)
. (B11)

Of course, these analytical solutions rely on the approxima-
tions that were made throughout these calculations, such as
equal spontaneous emission rate from all the excited states
considered. When precise values of the physical parameters in
the system are input, the optimal values for the parameters can
still be evaluated numerically using the formalism outlined.
See also Ref. [116] for a similar approach in achieving the
condition F↑ = −F↓.

APPENDIX C: DETAILS OF THE LASER-ION
EVOLUTION OPERATOR

In this Appendix, the explicit forms of the functions ap-
peared in Eqs. (7)–(10) of the main text will be provided. The
following frequency parameters are used:

�T
m ≡ μI + ωT

m, δT
m ≡ μI − ωT

m, (C1)

�A
m ≡ μII + ωA

m, δA
m ≡ μII − ωA

m, (C2)

�̃T
m ≡ μIII + ωT

m, δ̃T
m ≡ μIII − ωT

m, (C3)

while the rest of the parameters/functions are already defined
in Sec. II:

α
(x)
i,m(t ) = η

(i)
I,m�

(i)
I

2

{∫ t

0
dt1(ei�T

mt1 − e−iδT
mt1 ) + iB(i)

2

∫ t

0
dt2

∫ t2

0
dt1[(ei�A

mt1 + e−iδA
mt1 ) − t1 ↔ t2]

}
, (C4)

α
(y)
i,m(t ) = iη(i)

II,m�
(i)
II

2

{∫ t

0
dt1(ei�A

mt1 + e−iδA
mt1 ) − iB(i)

2

∫ t

0
dt2

∫ t2

0
dt1[(ei�T

mt1 − e−iδT
mt1 ) − t1 ↔ t2]

}
, (C5)

15Note that the spin-dependent force is related to the Rabi frequency via FmS = �k �(mS ).

023015-17



ZOHREH DAVOUDI et al. PHYSICAL REVIEW RESEARCH 2, 023015 (2020)

α
(z)
i,m(t ) = η

(i)
III,m�

(i)
III

2

∫ t

0
dt1(ei�̃T

mt1 − e−ĩδT
mt1 ), (C6)

β
(x)
i,m,n(t ) = η

(i)
II,mη

(i)
III,n�

(i)
II �

(i)
III

4

∫ t

0
dt2

∫ t2

0
dt1[(ei�A

mt2 + e−iδA
mt2 )(ei�̃T

n t1 − e−ĩδT
n t1 ) − t1 ↔ t2], (C7)

β
(y)
i,m,n(t ) = − iη(i)

I,mη
(i)
III,n�

(i)
I �

(i)
III

4

∫ t

0
dt2

∫ t2

0
dt1[(ei�T

mt2 − e−iδT
mt2 )(ei�̃T

n t1 − e−ĩδT
n t1 ) − t1 ↔ t2], (C8)

β
(z)
i,m,n(t ) = η

(i)
I,mη

(i)
II,n�

(i)
I �

(i)
II

4

∫ t

0
dt2

∫ t2

0
dt1[(ei�T

mt2 − e−iδT
mt2 )(ei�A

n t1 + e−iδA
n t1 ) − t1 ↔ t2], (C9)

γ
(z)

i (t ) = iB(i)

2

∫ t

0
dt1. (C10)

χ
(x)
i, j (t ) =

N∑
m=1

η
(i)
I,mη

( j)
I,m�

(i)
I �

( j)
I

8

∫ t

0
dt2

∫ t2

0
dt1[(ei�T

mt2 − e−iδT
mt2 )(ei�T

mt1 − e−iδT
mt1 )], (C11)

χ
(y)
i, j (t ) = −

N∑
m=1

η
(i)
II,mη

( j)
II,m�

(i)
II �

( j)
II

8

∫ t

0
dt2

∫ t2

0
dt1[(ei�A

mt2 + e−iδA
mt2 )(ei�A

mt1 + e−iδA
mt1 )], (C12)

χ
(z)
i, j (t ) =

N∑
m=1

η
(i)
III,mη

( j)
III,m�

(i)
III�

( j)
III

8

∫ t

0
dt2

∫ t2

0
dt1[(ei�̃T

mt2 − e−ĩδT
mt2 )(ei�̃T

mt1 − e−ĩδT
mt1 )]. (C13)

APPENDIX D: OPTIMIZATION PROCEDURE

In order to find the Rabi frequencies in the multifrequency
scheme of Sec. III B, the following optimization procedure
was implemented. A cost function is defined as

C
({

�
(i)
m′
}) ≡

N∑
i=1

N∑
j=1

[
Ji j

({
�

(i)
m′
}) − J targ.

i, j

]2
, (D1)

where {�(i)
m′ } are the set of Rabi frequencies at ion i corre-

sponding to a detuning from mode m′. J targ.
i, j is the target spin-

spin coupling matrix, e.g., corresponding to either the nearest-
neighbor or the long-range interactions in the Schwinger
Hamiltonian in Eqs. (19–21) for N number of ions. Ji, j ({�(i)

m′ })
in the multifrequency scheme is given in Eq. (23) for a given
set of lasers. The laser indices are suppressed in the following
discussion. The number of beatnote frequencies and their
values are fixed (they can be chosen by running the optimiza-
tion routine for select values and find the optimal values).
These can also be treated as variables to be simultaneously
optimized along with Rabi frequencies, but it was found that
the optimization is much more robust when fixed values of
beatnote frequencies were used.

The cost function is then minimized with respect to vari-
ables {�(i)

m′ } using a numerical routine, such as Mathematica’s
NMinimize, under the following conditions. First, one assures
that the Rabi frequencies obtained do not allow the sum of the
maximum magnitude of the first-order contaminating terms in
Eqs. (C4)–(C6) exceed a chosen value ε,

N∑
i=1

ñ∑
m=1

max(|αi,m(t )|) � ε, (D2)

so the evolution remains close to the desired one. Here ñ is
the number of beatnote frequencies used for a single laser. A
sample of random times were picked in the αi,m(t ) function

to approximate the maximum amplitude. ε was set to at most
30% of the maximum matrix element in J targ. in the examples
shown (although this sum rarely exceeded a few percent in all
cases). Second, the sum of Rabi frequencies at each ion i is set
to be less than 2 MHz to conform to the current experimental
limits,

ñ∑
m′=1

�
(i)
m′ � 2 MHz. (D3)

The optimization for the case of the single-frequency scheme
is a special instance of the problem described above when
ñ = 1.

APPENDIX E: ENGINEERED HAMILTONIAN OF THE
SCHWINGER MODEL WITH N = 8 IONS

The multifrequency, multiamplitude scheme presented at
the end of Sec. III describes the engineering of the long-range
Hamiltonian of the Schwinger model in the eight fermion-
site theory; see Fig. 7. The same optimization procedure can
be adopted to engineer the nearest-neighbor Hamiltonians
in the same theory using sets of laser beams that address
transverse (for H (xx)) and axial (for H (yy)) normal modes
of motion. The associated results, as well as the required
effective magnetic field that produces H (z), are depicted in
Figs. 11–13. Associated numerical values are presented in
the Supplemental Material [83]. These values are obtained
from a numerical study and do not represent experimental
findings.

APPENDIX F: NUMERICAL EVALUATION
OF LASER-ION EVOLUTION

In order to confirm that the evolution of laser-ion sys-
tems in the scheme proposed in this work follows that of a
Heisenberg spin model with a magnetic field, the exponent
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FIG. 11. (a) The effective spin-spin coupling matrix J (xx) in Eq. (13) resulting from multiple pairs of Raman beams addressing N = 8
individual ions at the Rabi frequencies �

(i)
I,m′ shown in (b), where i = 1, . . . , 8 and m′ = 1, . . . , 7. The pairs of beams addressed at ion i are

detuned from the transverse c.m. mode by seven different frequencies, μI,m′ = ωT
m′ + fs(ωT

m′ − ωT
m′+1) with fs = 0.5, as denoted in (c). The

Lamb-Dicke parameter, η, multiplying the Rabi frequencies in the figure is η = √
(�kI )2/4πMνT ≈ 0.068. Here the J (xx) matrix is tuned to

produce H (xx) of the eight fermion-site Schwinger model in Eq. (19) with x = 6. Numerical values associated with this figure are provided in
the Supplemental Material [83]. These values are obtained from a numerical study and do not represent experimental findings.

of the full evolution operator up to O(η2, ηB) [see Eq. (7)]
can be numerically evaluated for each set of laser beatnote
and Rabi frequencies found. Here we assume that the ions
are in their motional ground state, which can be achieved in
current ion-trap experiments. The results of this evaluation
are plotted, respectively, in Figs. 14 and 15 for the case of
the Schwinger-model parameters with N = 4 and N = 8 that
were studied in Sec. III. These figures correspond to the
evolution of the first ion in the chain and the results for the

rest of the ions are included in the Supplemental Material
[83]. To interpret these plots, note that the quantities that
are plotted are contributions to the exponent of the evolution
operator as a function of time t in milliseconds (ms) and the
following:

(a) plots in different colors the real and imaginary parts
of all contributions arising from −i

∫ t
0 dt1H ′

L(t1) with L =
I, II, III acting on a state with phonon number nph = 0, and
ignoring the O(1) numerical factor arising from spin operators

FIG. 12. (a) The effective spin-spin coupling matrix J (yy) in Eq. (14) resulting from multiple pairs of Raman beams addressing N = 8
individual ions at the Rabi frequencies �

(i)
II,m′ shown in (b), where i = 1, . . . , 8 and m′ = 1, . . . , 7. The pairs of beams addressed at ion i are

detuned from the axial c.m. mode by seven different frequencies, μI,N−m′+1 = ωA
N−m′+1 + fs(ωA

N−m′ − ωA
N−m′+1) with fs = −0.5, as denoted

in (c). The Lamb-Dicke parameter, η, multiplying the Rabi frequencies in the figure is η = √
(�kII )2/4πMνA ≈ 0.081. Here the J (yy) matrix

is tuned to produce H (yy) of the eight fermion-site Schwinger model in Eq. (20) with x = 6. Numerical values associated with this figure are
provided in the Supplemental Material [83]. These values are obtained from a numerical study and do not represent experimental findings.
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FIG. 13. The effective magnetic field, Bz, that produces the H (z)

Hamiltonian of the Schwinger model, Eq. (22), for N = 8 and
μ = 1. Numerical values associated with this figure are provided in
the Supplemental Material [83]. These values are obtained from a
numerical study and do not represent experimental findings.

acting on a general spin state. These are referred to as first-
order terms, O(η), elsewhere.

(b), (c), and (d) plot in different colors the real and
imaginary parts of all contributions arising from − 1

2

∫ t
0 dt2∫ t2

0 dt1[H̃I (t2), H̃I (t1)], − 1
2

∫ t
0 dt2

∫ t2
0 dt1[H̃II (t2), H̃II (t1)], and

− 1
2

∫ t
0 dt2

∫ t2
0 dt1[H̃III (t2), H̃III (t1)], respectively, acting on a

state with nph = 0, and ignoring the O(1) numerical factor
arising from spin operators acting on a general spin state. As is
seen, effective H (xx), H (yy), and H (zz) Hamiltonians originate

from the imaginary part of these contributions, signified by an
almost exact linear dependence in time.

(e), (f), and (g) plot in different colors the real and
imaginary parts of all contributions arising from − 1

2

∫ t
0

dt2
∫ t2

0 dt1([H̃I (t2), H̃II (t1)] + [H̃II (t2), H̃I (t1)]), − 1
2

∫ t
0 dt2

∫ t2
0

dt1([H̃I (t2), H̃III (t1)] + [H̃III (t2), H̃I (t1)]), and − 1
2

∫ t
0 dt2

∫ t2
0

dt1([H̃II (t2), H̃III (t1)] + [H̃III (t2), H̃II (t1)]), respectively, act-
ing on a state with nph = 0, and ignoring the O(1) numerical
factor arising from spin operators acting on a general spin
state. The small contributions observed show that the choice
of lasers’ detunings in our scheme leads to negligible commu-
tations among the two sets of the lasers.

(h) plots in different colors the real and imaginary parts
of all contributions arising from − 1

2

∫ t
0 dt2

∫ t2
0 dt1([HB(t2),

H ′
L(t1)] + [H ′

L(t2), HB(t1)]) for L = I, II, III acting on a state
with nph = 0, and ignoring the O(1) numerical factor arising
from spin operators acting on a general spin state. While
these contributions are assured to remain a small fraction of
the effective magnetic field desired, they are not bounded in
time and couple to motional degrees of freedom. As a result,
these contributions constitute the largest error to the desired
effective-Hamiltonian description that is engineered.

(i) plots in different colors the real and imaginary parts
of the contributions arising from −i

∫ t
0 dt1HB(t1) acting on a

state with phonon number nph = 0, and ignoring the O(1) nu-
merical factor arising from spin operators acting on a general
spin state. The real part of this contribution corresponds to the
desired H (z) Hamiltonian.

FIG. 14. Contributions to the exponent of the full laser-ion evolution operator up to and including O(η2, ηB) for laser parameters found in
the single-frequency, multiamplitude scheme in Sec. III to engineer the four fermion-site Schwinger Hamiltonian with x = 6 and μ = 1. The
quantities plotted are enumerated in this Appendix and are dimensionless. The horizontal axis is time in ms. The plots shown correspond to
the evolution of the first ion in the chain. The results for the rest of the ions can be found in the Supplemental Material [83].
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FIG. 15. Contributions to the exponent of the full laser-ion evolution operator up to and including O(η2, ηB) for laser parameters found in
the multifrequency, multiamplitude scheme in Sec. III to engineer the eight fermion-site Schwinger Hamiltonian with x = 6 and μ = 1. The
quantities plotted are enumerated in this Appendix and are dimensionless. The horizontal axis is time in ms. The plots shown correspond to
the evolution of the first ion in the chain. The results for the rest of the ions can be found in the Supplemental Material [83].

Note that in the multifrequency, multiamplitude scheme
applied to the case of N = 8, the Hamiltonians in Eqs. (3)–(5)
must be generalized as described in Sec. III [see discussion

after Eq. (23)]. The relation between the contributions enu-
merated and those given in Eqs. (7)–(10) and (C4)–(C13) is
evident.
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V. Meyer et al., Quantum information processing with trapped
ions, Philos. Trans. R. Soc., A 361, 1349 (2003).

[116] J. W. Britton, B. C. Sawyer, A. C. Keith, C.-C. J. Wang, J. K.
Freericks, H. Uys, M. J. Biercuk, and J. J. Bollinger, En-
gineered two-dimensional Ising interactions in a trapped-ion
quantum simulator with hundreds of spins, Nature (London)
484, 489 (2012).

023015-24


